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Abstract. We study the fundamental enumeration problem in asyn-
chronous message-passing networks. Anonymous processes have to even-
tually decide on pairwise distinct identifiers, despite all starting in the
same initial state. It is known since Angluin’s seminal result [2] that some
grain of salt is required for distributed algorithms to solve the problem,
e.g., the system needs to have a non-symmetrical topology or unbiased
independent random bits.
The starting point of this paper is the observation that these approaches
demand too strong assumptions. In short, by adding time to the picture,
we show that the enumeration problem can be solved with far less. The
idea is to consider a schedule of events in a distributed system as a space-
time structure that is gradually learnt by the processes. We introduce the
notion of divergence time which essentially measures the time by which
the causal order induced by the system schedule has differentiated all
the processes.
We prove lower bounds on the running time of any algorithm solving
enumeration in terms of divergence time. In particular, we show that
any adversary scheduler against which the enumeration problem can be
solved necessarily selects schedules with finite divergence time.
We prove that this last condition is sufficient : we present the Torche
algorithm which solves enumeration for all schedules with finite diver-
gence time. In this sense, having finite divergence time is the smallest
grain of salt required to solve the enumeration problem.

1 Introduction

Process identifiers are crucial in distributed systems, and are implicitly
assumed in most distributed algorithms. The problem of assigning dis-
tinct identifiers to processes, however, is not trivial. This problem, called
enumeration, has received a lot of attention in the past decades [1,2,6,9,
11,16,21,22,23].

The problem consists for a set of n processes, starting identically (in
the same initial state), to each decide a value (an integer in the range
? Acknowledgment: This work has been supported in part by the European ERC
Grant 339539 - AOC



{1, . . . , n}) that is different from all the values decided by the other pro-
cesses. The core difficulty has been pinpointed in Angluin’s seminal pa-
per [2]. In short, the problem is impossible to solve deterministically in any
network with spatial symmetry. Roughly speaking, two processes in the
network are said to be related by a spatial symmetry if they have the exact
same view of their surrounding. To get an intuition of Angluin’s argument,
consider a deterministic algorithm running on an even-sized oriented net-
work of processes. Assume, for the sake of simplicity, that when a process
is activated, the process atomically reads the states of all its neighbours
in the network, and updates deterministically its own state accordingly.
Initially, all the processes have the same state. The neighbourhood of any
process p is thus similar to the neighborhood of the diametrically oppo-
site process q. If p and q are concurrently activated, then their states are
updated to the same value. By repeating this kind of activation, one can
design schedules of events during which no process is distinguishable from
the opposite process, thus preventing enumeration.

The only way to circumvent Angluin’s argument is to assume that
the distributed system contains some grain of salt, i.e., that there is some
breaking of symmetry somewhere which could be exploited by distributed
algorithms to enumerate. So far, two sorts of grain of salts have been
considered in the literature. One approach (I), adopted in [6,9,16], assumes
that the topology of the network has no non-trivial spatial symmetries.
Another approach (II) is the use of randomization [1,11], with processes
having local access to unbiased independent random bits.

The starting point of this paper is the observation that these ap-
proaches are not necessary. The idea is to consider a schedule of events in
a distributed system as a space-time structure that is gradually learnt by
the processes.

Instead of considering that only the spatial part (i.e. the network topol-
ogy) has no non-trivial symmetries, we consider the much weaker assump-
tion that the space-time structure, taken as a whole, has no non-trivial
symmetries. Our approach encompasses naturally the two previous ap-
proaches. First, if the spatial part has no non-trivial symmetries, then the
space-time structure necessarily lacks non-trivial symmetries; second, the
use of independent random bits ensures, with probability one, that the
space-time structure lacks non-trivial symmetries.

We consider a general asynchronous distributed system model where
processes communicate with their neighbours by sending and/or receiving
messages through communication channels. Moreover, the processes may



have access to unreliable1 sources of randomness. The different possibil-
ities of scheduling events are chosen by some external entity, called the
adversary scheduler.

Our main conceptual contributions are twofold. First, we introduce the
notion of divergence time of a schedule S of events, which, roughly speak-
ing, measures the time by which all the processes have differentiated2. We
then exhibit lower bounds on the running time of any algorithm solving
the enumeration problem, in terms of divergence time. In particular, we
show that any adversary scheduler against which it is possible to solve the
enumeration problem can only select schedules that have finite divergence
time. In other words, the finite divergence time condition is a necessary
condition for solving the enumeration problem.

Second, we prove that the finite divergence time condition is actu-
ally sufficient. We present an algorithm, we call Torche, that solves the
enumeration problem over all the schedules with finite divergence time,
assuming only the knowledge of the network size3.

The main consequence of the existence of this algorithm is that the fi-
nite divergence time condition is indeed the smallest grain of salt required
to solve the enumeration problem. By “smallest grain of salt”, we mean
that any other grain of salt, i.e., any other property of the schedules which
allows to break symmetry and solve enumeration (e.g., topology without
symmetries, or use of randomness) necessarily implies that the divergence
time is finite.

Two new techniques are involved in the design of Torche: folded
causal past reconstruction and phylogenetic tree extraction.

– First, the folded causal past reconstruction technique consists for each
process p to maintain a compressed estimate of its causal past, by glu-
ing together the estimates of its neighbours, and folding together the
events that have isomorphic causal pasts. This technique may be seen
as the spatio-temporal generalization of the compressed view technique
from [20].

– Second, Each process p can extract from the folded estimate of its
causal past a phylogenetic tree which, roughly speaking, represents the
various differentiations that have occurred, as far as process p knows.
The number of vertices that lies in the same level in this tree somehow

1 The bits used by the processes may, to some extent, be correlated, across the network
and through time.

2 More precisely, they have pairwise non-isomorphic causal pasts. See details below.
3 The knowledge of the network size, or any similar property, is a common assumption
in the literature [21,22].



gives the effective number of distinct processes, i.e., the number of
distinguishible (groups of) processes. Assuming that the schedule has
finite divergence time, this tree eventually has n branches, where n is
the network size. Process p can then detect the end of this divergence
period, and, since p knows on which branch of the tree it lies, process
p can also decide on a unique identifier.

Our Torche algoritm has several interesting properties. The running
time is tight in the sense that processes decide right after the divergence
time plus the time for the information at any process to reach the whole
network (cover time). The space required for storing the process states
and messages is polynomial in the network size, the divergence and cover
time.

(Paper organization).We present our computational model, as well
as the notions of divergence time in Section 2. We present our lower bounds
on the running time of any algorithm solving the enumeration problem
in Section 3. In Section 4, we present the Torche algorithm, and prove
its main properties. In Section 5, we show how our notion of divergence
time encompasses other notions used to circumvent Angluin’s argument
in previous work, namely fiber-minimal networks, and the use of random
bits. Finally, we discuss the related work in Section 6.

2 Model and Definitions

We consider a general asynchronous model of computation where anony-
mous processes communicate by message passing.

2.1 Algorithms

(Graphs). We consider directed graphs with (possibly) multiple arrows
between two vertices, and (possibly) self-loops. Formally, a graph G is
given by a set VG of vertices, a set AG of arrows, and maps s, t : AG→
VG specifying the source and target vertices of each arrow. A vertex-
labeling (resp. arrow-labeling) is a map VG→ X (resp. AG→ Λ). A path
is a sequence a1 . . . al of arrows such that t(ai) = s(ai+1) for 1 ≤ i < l.
This path is a cycle if moreover t(al) = s(a1). The graph G is acyclic if
it does not contain any cycle.

A morphism φ : G→ H is given by a vertex function φV : VG→ VH,
and an arrow function φA : AG → AH such that s(φA(a)) = φV (s(a))
and t(φA(a)) = φV (t(a)) for every arrow a ∈ AG. If moreover the graphs
G and H are equipped with a vertex-labeling and an arrow-labeling, it is



also required that φV and φA preserve the labels. The morphism φ is an
isomorphism if both φV and φA are bijective. We denote by G ' H the
statement that G and H are isomorphic.

(Networks). A network is N simply modeled as a graph with at most
one arrow from one vertex to another, and without self-loops. The vertices
represent the processes. An arrow with source p and target q represents
a communication channel transporting messages from p to q. For each
process p, we denote by Np the set of neighbour processes with arrow
towards process p.

Algorithm 1: Normal Form - process p
1 variables:
2 state sp of p initially set to some common value
3 set tp of triples (ω, z) where ω ∈ Λp and z is a state value
4 variable bp for random bits
5 for round r = 0, 1, . . .
6 tp ← scan() /* scan neighbours */
7 bp ← rand() /* “random” bits */
8 sp ← new-state(sp, tp, bp) /* update state */

(Processes). The processes are anonymous (no identifiers), they start
in the same initial state, and all execute the same algorithm. We also
assume that each process can read some bits from some local source of
information. These bits can be thought as “random” bits, but we insist on
the fact that, in the most general case, these bits may be correlated (both
in time and across the network) in any possible way.

Each process p performs an infinite series of asynchronous rounds.
Each round comprises two phases: a scan phase, and an update phase.
The scan phase collects the (possibly not up to date) states of its neigh-
bours and returns the multiset tp of couples (ω, z) where z is the state
of a neighbour q received along the incoming arrow a with label ω and
source q. Then, during the update phase, process p reads some bit-string
bp from its local source of information, and updates its state by applying
a deterministic transition function new-state to the tuple formed by its
current state, the multiset tp collected during the scan phase, and the
bit-string bp. Algorithm 1 sums up the normal form of an algorithm.



2.2 Schedules

We model a (finite or infinite) schedule S on a network N as a (finite
or infinite) acyclic graph equipped with a labeling of the vertices with
bit-strings, and a labeling of the arrows with the same set of arrow labels
as the network N . The vertices of the schedule are couples (p, r) where
p is a process, r ≥ 0 is an integer. We refer to (p, r) as an event at p in
S. Each (p, r) with r ≥ 1 is labeled with a bit-string b representing the
“random” bit-string read by p during round r − 1. Intuitively, each event
(p, r) represents the state of p at the beginning of round r at p. This state
is the result of the previous update phase at round r − 1, and depends
on the previous state of p, as well as the state values collected during
the previous scan operation. These dependencies are modeled by arrows
between events.

More precisely, if during round r, process p received the state as-
sociated with the round s of the neighbour q, then there is an arrow
(q, s)→ (p, r) labeled with the same label as the arrow from q to p in the
network. For every r ≥ 0, there is also an arrow (p, r)→ (p, r+1) labeled
with the distinguished symbol ε. Figure 1 gives an example of a schedule.

Fig. 1. Schedule - Process c in round 2 reads the initial state of process a, and the
state at the beginning of round 1 of process b. Note (on the right) that a scan may
return values older than the values returned by the previous scan. The labels of the
arrows are omitted.

(Causality). For any two events e, e′ in S, e causally precedes e′ in
S if there exists a path from e to e′ in S. The causal past of an event
e in S is the schedule which is the sub-graph of S spanned by e and all
the events causally preceding e in S. Given a finite schedule S, for any
process q participating in S, we refer to the causal past of the latest event
at q in S as the causal past of q in S. A past cone at p is a finite schedule
P which is the causal past of some event e = (p, r) ∈ VP . The event e is
necessarily unique, and is referred to as the apex of P . The causal height,
or simply height, of an event e in S is the length of the longest directed



path in S reaching e. The height of a finite schedule S is the maximum
height of its events, i.e., the length of the longest directed path contained
in S. Note that the height of a past cone is the height of its apex.

(Cut). A cut C of a schedule S is a set of events in S such that each
process of the network participates exactly once in C. For each process p,
we denote by C[p] the height of the event (p, r) in C. The initial cut is
defined by {(p, 0) | p ∈ NV }. Cuts are partially ordered: C 4 C ′ if, for
all p, C[p] ≤ C ′[p]. Equipped with this partial order, the set of cuts of a
schedule form a lattice.

(Segment). Given two cuts C 4 C ′ in a schedule S, the segment
K = [C,C ′] is the sub-schedule of S comprising all the events (p, r) with
height C[p] ≤ h ≤ C ′[p], where p runs over all the processes. The height
of the segment K is the length of the longest causal chain in K. The prefix
[0, C] is the sub-schedule of S comprising all the events (p, r) with height
at most C[p]. The suffix [C,∞) is the sub-schedule of S comprising all
the events (p, r) with height at least C[p].

(Fairness). The schedule S is fair if, for any two processes p and q,
for all t ≥ 1, there is a cut C such that ∀p, C[p] ≥ t and [C,∞) contains
a path from some event at p to some event at q. Unless stated otherwise,
all infinite schedules are assumed to be fair.

(Adversary scheduler). An adversary scheduler is modeled as a set
of (fair)infinite schedules. Adversary A is stronger than adversary B if
B ⊆ A.

(Divergence cut). The divergence cut of a schedule S is the minimum
cut Cdv(S) such that, for all cuts C < Cdv(S) in S, the causal pasts of
any two distinct events in C are not isomorphic. The divergence time of
a schedule S is defined as τdv(S) = maxpCdv[p]. If the divergence cut
is undefined, we write Cdv(S) = ∞ and τdv(S) = ∞. We say that the
schedule S has finite divergence time if the divergence cut exists. When
it is clear from the context, we simply write Cdv and τdv, omitting the
reference to the schedule S.

(Cover cut function). The cover cut function of a schedule S is
defined as follows. For any cut C in S, Ccv(C, S) is the minimum cut C ′

such that, for any two processes p, q, there is a path in [C,C ′] from some
event at p to some event at q. When it is clear from the context, we simply
write Ccv(C),omitting the reference to the schedule S.

(Decision event). Any process p is assumed to be able to trigger a
decide action. Afterwards, its state remains unchanged. It is assumed that
each process can trigger this action at most once during the execution.



The event at p at which this action is performed is the decision event at
p.

(Decision cut). The decision cut is the cut formed by the decision
events of all the processes. If some process never decides, the decision cut
is undefined.

3 Lower Bounds on the Running Time

In this section, we present lower bounds on the (causal) height of the de-
cision events of the processes, in terms of divergence and cover cuts. The
following proposition states that any adversary scheduler against which
enumeration is solvable necessarily provides schedules with finite diver-
gence time. More precisely, it is impossible for all processes to decide
strictly before the divergence cut.

Proposition 1. Let A be a set of schedules over the network N . Consider
an algorithm solving enumeration over all the schedules in A. Then all
schedules in A have finite divergence time. And, more precisely, for any
schedule in A, the cut C defined by the decision events satisfies

∃p ∈ N , C[p] ≥ Cdv[p]

Proof. Consider a schedule S in A. Let C denote the decision cut. Assume
first that the divergence cut of S is undefined. By definition, this implies
that there exists a cut D < C, and two distinct events in D, at two
distinct processes p, q, with isomorphic causal pasts. In particular, p and
q must have decided on the same value; whence a contradiction. Thus, S
has finite divergence time.

Assume now that C ≺ Cdv, i.e., for all processes p, C[p] < Cdv[p]. By
definition of the divergence cut, this means that there exist two distinct
processes p, q such that the causal pasts of their decision events are iso-
morphic. This implies that p and q decide on the same value; whence a
contradiction. ut

The following states that, in general, at least some process has to wait
until it notices that all processes have differentiated.

Proposition 2. Consider an algorithm solving enumeration. Then there
exists a network N and a schedule on N such that the cut C defined by
the decision events of the processes satisfies

∃p ∈ N , C[p] ≥ Ccv(Cdv)[p]



Proof. We consider a linear network N of 3 vertices, and the schedules
S1 and S2 in Figure 2. The figure also depicts the divergence and cover
cuts for schedule S1. We claim that, in S1, process c cannot decide before
its second event. Indeed, assume that process c decides at its first event.
However, at this point, S1 and S2 are indistinguishable for process c. In
S2, the first events of a and c have isomorphic causal pasts. Thus, in S2,
process a decides on the same value as c; whence a contradiction. In par-
ticular, the decision cut C(S1) in S1 satisfisfies C(S1)[c] ≥ Ccv(Cdv, S1)[c].

ut

Fig. 2. Proof of Proposition 2 - Process c cannot decide before its second event.

4 The Torche Algorithm

Proposition 1 states that, in order to solve the enumeration problem, it
is necessary that the schedules chosen by the adversary scheduler have a
finite divergence time. In this section, we prove that having a finite diver-
gence time is a sufficient condition for solving the enumeration problem.
In this sense, having a finite divergence time is indeed the smallest grain
of salt required to solve the enumeration problem.

The main idea underlying our approach consists in having processes
trying to get an estimate, as accurate as possible, of their causal pasts.
For the sake of simplicity, let us consider how a naive version of a full
information algorithm would work. Process p starts in its initial state,
represented as a single vertex. In the next round, process p collects the
states of (some of) its neighbours, draws a random value b (if any), and
updates its own state. In a naive full-information algorithm, this new state
is encoded as a tree. The root corresponds to the new round that p has
just performed, and is labeled with the value b that has been drawn. The
root’s children are the trees received from the neighbours, as well as the



tree corresponding to the previous state of p. If p has received the (tree)
state of q along the incoming arrow q

ω−→ p, then the arrow connecting the
tree of q to the root is labeled with ω as well. The arrow connecting the
previous tree of p to the root is labeled with the distinguished symbol ε.
The first row in Figure 4 illustrate how the full-information trees evolve
along the schedule of Figure 3.

An ε-path is a path whose edges are all labeled with ε. A maximal
ε-path is an ε-path which cannot be extended to a longer ε-path. A first
observation is that, from the designer’s point of view, the maximal ε-paths
can be mapped to process identities. However, the tree structure has a lot
of redundancy. For example, if p sees q′ which has seen p before, then there
are two maximal ε-paths that can be associated with p. For instance, in
Figure 4, the tree T 3

p contains two copies of T 1
p .

This example leads to a second observation: the tree of p that was
observed by q is isomorphic to a sub-tree of the latest tree of p. A third
observation is that there is one-to-one correspondance between such trees
and the causal pasts that led to them. In particular, two processes have
isomorphic causal pasts if and only if the corresponding trees are isomor-
phic.

From these observations, we adopt the following approach. We fold the
tree by identifying vertices whose sub-trees are isomorphic. This amounts
to identifying events in the schedule that have isomorphic causal pasts.
Let W be the graph obtained this way. Since it is possible that two dis-
tinct processes have lived isomorphic causal pasts, this folding operation
may identify them. See the second row in Figure 4. Moreover, the ε-paths
in W form a tree we call the phylogenetic tree associated with W . This
phylogenetic tree is interpreted as follows. Initially, all the processes are
in the same initial state, so the effective number of distinct processes is
1, and is encoded by the fact that the ε-tree has a single root. As time
flows, processes undergo specific events that differentiate them, and the
tree branches. The number of leaves of this tree gives the effective number
of distinct processes at the end of the schedule, or, mathematically speak-
ing, the number of isomorphism classes of maximal causal pasts in the
schedule. In particular, the number of leaves is at most n. By the assump-
tion that the divergence time is finite, any two processes eventually have
non isomorphic causal pasts, and thus, the number of leaves eventually
reaches n.

As we assume that the processes know the size n of the network, pro-
cess p can detect that all processes have differentiated (i.e., have pairwise
non isomorphic causal pasts). Moreover, p is aware of the leaf representing



itself : it is the leaf with the highest height. Roughly speaking, process p
finally sorts the leaves of W and decides on the rank of its leaf.

Fig. 3. Schedule with processes p, q and q′. Four cuts are represented. See Figure 4 for
the states of the processes at these cuts.

Fig. 4. Evolution of the full-information trees (first row) and their respective folding
(second row) at the cuts from Figure 3. Due to space limitations, at cut C3, we only
represent the tree and folded tree of process p.

4.1 Fold Operation

Let P be a schedule. Recall that some arrows may be labeled with the
distinguished symbol ε. There is a partial order on the vertices : u 4 v if
there is a path from u to v. We define ↓ v as the subgraph of P induced
by the vertices u 4 v. We define an equivalence relation on the vertices
: u ∼ v if the the graphs ↓ u and ↓ v are isomorphic. We denote by [u]



the equivalence class of u. We also define an equivalence relation on the
arrows : u ω−→ v ∼ u′

ω′
−→ v′ if there is some isomorphism between ↓ v and

↓ v′ mapping the arrow u
ω−→ v to u′ ω′

−→ v′. This implies v ∼ v′, u ∼ u′

and ω = ω′. We denote by [u
ω−→ v] the equivalence class of u ω−→ v.

The graph W = fold(P ) is defined as follows. The vertices of W
are the equivalence classes [u] with u ∈ VP . The arrows of W are the
equivalence classes [u ω−→ v] with u ω−→ v ∈ AP . The source (resp. target) of
[u

ω−→ v] is [u] (resp. [v]). The complexity of the fold operation is related to
the complexity of graph isomorphism. Isomorphism of trees can be tested
in linear time. However, the same problem for directed acyclic graphs is
equivalent to the classic (undirected) graph isomorphism problem. By the
recent work of [4], W can be computed from P in quasi-polynomial time.

Lemma 1. The map Φ : P → fold(P ) defined on the vertices by u 7→ [u]
and on the arrows by u ω−→ v 7→ [u

ω−→ v] is a graph morphism preserving
the labels of the vertices and arrows. Moreover, Φ also preserves the height
of the vertices.

Proof. The claim follows from the definition of fold(P ). ut

Lemma 2. Let P be a schedule. Let W = fold(P ). The number of maxi-
mal ε-paths inW equals the number of isomorphism classes of the maximal
causal pasts of the processes in P . In particular, this number is at most
the number n of processes in the network.

Proof. Let E denote the set of maximal events in P , i.e., the events e which
do not causally precede any other event. The set E can be partitioned into
equivalence classes. Each maximal ε-path π in W can be identified with
the last vertex l along this path (equivalently, the corresponding leaf in
the tree formed by the maximal ε-paths). By definition of fold, the vertex
l denotes an equivalence class of events in P . An event e in the class l is
maximal, as otherwise (since the map Φ preserves the height) l would not
be the last vertex along π. Therefore, there is one-to-one correspondance
between the equivalence classes partitioning E and the final vertices of
maximal ε-paths in W . ut

4.2 Algorithm Details

Each process p maintains an estimate Wp of its folded causal past. At the
beginning of a round, process p scans the set Np of its neighbours, and
pulls their estimates (Wq)q∈Np . Process p then forms the disjoint union



of these graphs, including its previous estimate, adds a new vertex (r, b)
labeled with the current round number r and a random value b (if any),
and connects the apex of each estimateWq with the new vertex (r, b); this
arrow being labeled with the same label ω as the one connecting q to p.
We denote this whole operation by

(⊔
q∈Np∪{p}Wq

)
⊕ (r, b). The variable

Wp is updated by folding the aforementioned graph.
As will be shown below, Wp is isomorphic to the folding of the causal

past of process p. Process p derives the phylogenetic tree associated with
Wp and counts the number c of maximal ε-paths. If process p notices that
c = n, i.e., that all processes have differentiated, then process p computes
the shortest prefix Kp of Wp whose phylogenetic tree still has n leaves
(maximal ε-paths). Process p sorts the maximal ε-paths of Kp (according
to any predefined total order), and decides on the rank corresponding to
its own ε-path (necessarily the longest ε-path in Wp).

Algorithm 2: Torche- process p
1 initial knowledge:
2 the network size n;
3 variables:
4 Wp : acyclic graph, reduced estimate of causal past, initially set to a single

vertex (0,⊥)
5 for round r = 1, 2, . . .
6 (Wq)q∈Np ← scan()
7 b← rand() /* possibly poor quality random bits */

8 Wp ← fold
((⊔

q∈Np∪{p}Wq

)
⊕ (r, b)

)
9 let c be the number of maximal ε-paths in Wp

10 if c = n then
11 let Kp be the shortest prefix of Wp with n maximal ε-paths
12 sort the maximal ε-paths of Kp

13 decide on the rank of the ε-path corresponding to self

Lemma 3. Let P be a past cone at p. Then, at the end of P , there is an
isomorphism Wp ' fold(P ).

Proof. In this proof, we denote by W r
p the value of the variable Wp at the

beginning of round r. We prove the claim by induction on the height h
of P . If h = 0, i.e., P is reduced to a single vertex (p, 0) labeled with ⊥,
then, since Wp is initialized to a single vertex labeled with ⊥, the folded
graph fold(W 0

p ) equals W 0
p and the claim holds. Assume the result holds

for all causal pasts of height at most h. Let P be a causal past at p of



height h+1. Then, P can be written as P =
(⋃

q∈Np∪{p} Jq

)
⊕ (p, r+1),

where Jq is the maximal causal past of height at most h at q in P , and
r + 1 is the round number at p at the end of P . For every q ∈ Np ∪ {p},
let rq be the round number of process q at the end of Jq. By the induction
hypothesis, we have ∀q ∈ Np∪{p}, W

rq
q ' fold(Jq). Moreover, according

to Algorithm 2 (line 8), we have

W r+1
p = fold

 ⊔
q∈Np∪{p}

W
rq
q

⊕ (r + 1, b)


' fold

 ⊔
q∈Np∪{p}

fold(Jq)

⊕ (r + 1, b)


' fold(P ).

ut

Proposition 3. Given that the processes know the network size n, the
Torche algorithm solves enumeration. Moreover, for every fair schedule
S with finite divergence time: (i) the height of the decision event at p
is at most Ccv(Cdv)[p], (ii) state and message size is O(n2 · T 2) where
T = maxp{Ccv(Cdv)[p]}.

Proof. (Termination). Let P be a past cone at p of height Ccv(Cdv)[p].
By the definition of the cover time function, all processes participate in
P . By definition, any two distinct events in Cdv have non isomorphic
causal pasts. Therefore, by Lemma 2, the number of maximal ε-paths in
W = fold(P ) is n. Thus p decides at most at the end of P .

(Uniqueness). Let p1, p2 be two distinct processes. Let P1, P2 the causal
pasts of their decision events respectively. Let Z = [0, Cdv] be the prefix
corresponding to the divergence cut. Necessarily, Z is a prefix of P1 and
P2. By Lemma 3, the valuesK1 andK2 computed at line 11 in Algorithm 2
both correspond to fold(Z), thus K1 = K2 =

def
K. In particular, processes

p1 and p2 sort the maximal ε-paths of K the same way. And they decide
on the ranks of two distinct ε-paths.

(State and message size). When a process decides, the variable Wp is
(isomorphic to) the folding of a past cone of height at most T . Thus, it is
possible to encode Wp as an adjacency matrix of dimension n ·T at most,
which requires O(n2T 2) bits. ut



5 Encompassing Previous Approaches

In this section, we explain how previous approaches can be understood
in terms of divergence time. More precisely, we explain how the under-
lying assumptions (lack of symmetry in the network topology, or use of
independent random bits) imply that the divergence time is finite. Other
conditions may be assumed. But were they sufficient to solve enumeration,
they would necessarily imply that the divergence time is finite.

(Fiber minimal networks). As we pointed out, previous work [2,7,
8,9,21,22,23] mainly focused on the spatial aspect : the topology of the
network. We briefly recall the definition of a fibration. A fibration Ψ :
N → G is a surjective graph morphism (preserving labels if any) such
that, for any vertex v in G, for any vertex q in Ψ−1(v) (the fiber over v),
Ψ induces a bijection (preserving labels if any) between the set of arrows
into v and the set of arrows into q. The network N is fiber-minimal if
any fibration Ψ : N → G is an isomorphism. Refer to [7] for further
details. The notion of fibration captures the “spatial similarities” among
the vertices of a network. The following proposition relates the concept of
fibration with that of divergence time.

For the sake of simplicity, we consider, in this section, networks with
port-awareness, i.e., the processes are able to distinguish their incoming
arrows. Formally, given q ω−→ p and q′ ω

′
−→ p, then q = q′ iff ω = ω′.

Proposition 4. A network N with port-awareness is fiber-minimal if and
only if all fair schedules have a finite divergence time.

Proof. If the network N is not fiber-minimal, then [6,7] have shown how
to design a schedule in which at least two processes are always indistin-
guishable, i.e., for any height h, their respective causal pasts of height
h are isomorphic. In particular, this schedule has an infinite divergence
time. We proceed to prove the other direction : if there exists a schedule
S with infinite divergence time then the network is not fiber-minimal.

Let S be a fair schedule with infinite divergence time on a network
N . Let Φ : S → W = fold(S) be the surjective graph morphism as
defined in Lemma 1. Let k denote the number of infinite ε-paths in W .
By assumption, k < n. We define a network G. The vertices of G are the
infinite ε-paths in W . For any two vertices u, v in G, there is an arrow
u

ω−→ v if and only if u = u1
ε−→ u2 . . . , v = v1

ε−→ v2 . . . , there exist
i, j ≥ 1 such that ui

ω−→ vj . Naturally, there is a surjective graph morphism
Ψ : N → G. This morphism maps a vertex p in N to the infinite ε-path



in W obtained as the image of the infinite ε-path associated with p in
S under the folding operation. We claim that Ψ is a fibration. Indeed,
let q be a vertex in N . Let b = b1

ε−→ b2 . . . be the infinite ε-path in
S corresponding to process q, and v = Φ(b) = Ψ(q) = v1

ε−→ v2 . . . the
corresponding infinite ε-path in W . Let u ω−→ v be a neighbour of v in G.
We have to prove that there exists a unique arrow p

ω−→ q in N such that
ψ(p) = u.

We write u = u1
ε−→ u2 . . . . By definition, there exist i, j ≥ 1 such

that ui
ω−→ vj in W . The existence of the arrow ui

ω−→ vj implies that
there exist vertices (events) a′i, b

′
j in S such that Φ(a′i) = ui, Φ(b′j) = vj

and a′i
ω−→ b′j . We also have Φ(bj) = vj , that is, the events bj and b′j have

isomorphic causal pasts. In particular, there exists an event ai in S such
that Φ(ai) = ui and ai

ω−→ bj . Let p be the process in N at which the
event ai occurs. We have p ω−→ q, and, by the fact that incoming edges
have pairwise distinct labels, p is the unique neighbour of q with such an
arrow. It remains to show that Ψ(p) = u. Then p

ω−→ q. Moreover, the
infinite ε-path a = a1

ε−→ a2 . . . in S corresponding to p is the one going
through the event ai. The infinite ε-path Φ(a) inW is necessarily the path
u, because, by definition, ui is such that ai occurs in [Ck,∞), and thus
there is a unique infinite ε-path in W going through ui. In particular,
Ψ(p) = u.

To conclude, we have shown that Ψ : N → G is a fibration. Since G
has strictly less vertices (k < n), N is not fiber-minimal. ut

(Randomness). We argue that the main purpose of using randomness is
to have a finite divergence with high probability. For the sake of simplic-
ity, we consider the case of synchronous bidirectional complete network
(without arrow labels). At every round r, process p reads a random bit
brp.

Proposition 5. Assuming that (brp)p∈VN ,r∈N are mutually independent
uniform random bits, we have τdv = maxp{Cdv[p]} = O(log n) with high
probability.

Proof. Fix an arbitrary integer k. Consider, for each process p, the se-
quence wp = (b1p, . . . , b

k
p) of the k bits read during the first k rounds. The

problem of computing the probability α that wp = wq for at least two dis-
inct processes p, q is an instance of the birthday paradox (n people with 2k

possible birthday dates). This yields α ' 1−e−
n2

2k+1 . Setting k = O(log n),
we obtain α ' 1− e−O(n). ut



6 Related Work

Our computational model is the classical asynchronous message-passing
model [14]. Our formulation of this model can be seen as the asynchronous
generalization of the LOCAL model of Linial et al. [13]. Many approaches
have addressed the issue of symmetry breaking in the LOCAL model.
Leveraging the synchronous nature of LOCAL, these approaches have
mainly focused on computing the time complexity of problems like maxi-
mum independent set, maximal matching, coloring or network decompo-
sition [3,5,10,13,17,18,19]. In most cases, these approaches assume pro-
cesses with identifiers [3,17]. Our paper addresses the question of symme-
try breaking in the more general settings of asynchronous computation in
purely anonymous networks (no identifiers). In particular, we address the
fundamental problem of enumeration on arbitrary networks. As explained
in the introduction, the main obstacle to symmetry breaking problems in
anonymous networks has been formulated by Angluin in [2], under the
form of graph coverings, a concept borrowed from algebraic topology [15].
Later on, Yamashita et al. [21,22,23] extended Angluin’s work, and in-
spired by the work of Johnson et al. [12], introduced the notion of view
of a process, to encode all the information accessible to a process as the
rooted tree of the finite labeled walks in the network from that process.
In [20], the author presents a method to compress a view, thereby enhanc-
ing the space and time complexity of some symmetry breaking algorithms.
In [6], Boldi et al. considered several synchronous and asynchronous mod-
els, and provided a characterization based on the notion of graph fibra-
tion [7], another concept borrowed from algebraic topology, which refines
that of graph covering. In [8,9], Chalopin et al., inspired by the work of
Mazurkiewicz [16], studied symmetry breaking in message-passing, and
presented message-efficient algorithms in the context of networks without
spatial symmetries.
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